
[Type here]

 ASP.NET Core Web API Best Practices

1

TABLE OF CONTENTS

Introduction .. 2

Startup Class and the Service Configuration 3

Project Organization ... 5

Environment Based Settings .. 6

Data Access Layer .. 7

Controllers .. 8

Actions ... 9

Handling Errors Globally ... 11

Using ActionFilters to Remove Duplicated Code 13

Using DTOs to Return Results and to Accept Inputs 14

Routing ... 15

Logging .. 17

Paging, Searching, Sorting .. 18

Versioning APIs ... 18

Using Asynchronous Code ... 19

Caching .. 21

Using ReadFormAsync Method ... 22

CryptoHelper And Data Protection .. 24

Content Negotiation ... 26

Security and Using JWT .. 27

Testing Our Applications ... 29

Conclusion .. 29

 ASP.NET Core Web API Best Practices

2

INTRODUCTION

While we are working on a project, our main goal is to make it work as it

is supposed to and fulfill all the customer's requirements.

But wouldn't you agree that creating a project that works is not enough?

Shouldn't that project be maintainable and readable as well?

It turns out that we need to put a lot more attention to our projects to

write them in a more readable and maintainable way. The main reason

behind this statement is that probably we are not the only ones who will

work on that project. Other people will most probably work on it once we

are done with it.

So, what should we pay attention to?

In this guide, we are going to write about what we consider to be the best

practices while developing the .NET Core Web API project. How we can

make it better and how to make it more maintainable.

So, let’s go through some of the best practices we can apply when

working with ASP.NET Web API project.

 ASP.NET Core Web API Best Practices

3

STARTUP CLASS AND THE SERVICE CONFIGURATION

In the Startup class, there are two methods: the

ConfigureServices method for registering the services and the

Configure method for adding the middleware components to the

application’s pipeline.

So, the best practice is to keep the ConfigureServices method clean and

readable as much as possible. Of course, we need to write the code inside

that method to register the services, but we can do that in a more

readable and maintainable way by using the Extension methods.

For example, let's look at the wrong way to register CORS:

Even though this way will work just fine, and will register CORS without

any problem, imagine the size of this method after registering dozens of

services.

That’s not readable at all.

public void ConfigureServices(IServiceCollection services)

{

 services.AddCors(options =>

 {

 options.AddPolicy("CorsPolicy",

 builder => builder.AllowAnyOrigin()

 .AllowAnyMethod()

 .AllowAnyHeader());

 });

}

 ASP.NET Core Web API Best Practices

4

The better way is to create an extension class with the static method:

And then just to call this extended method upon the IServiceCollection

type:

To learn more about the .NET Core’s project configuration check out: .NET

Core Project Configuration.

public static class ServiceExtensions

{

 public static void ConfigureCors(this IServiceCollection services)

 {

 services.AddCors(options =>

 {

 options.AddPolicy("CorsPolicy",

 builder => builder.AllowAnyOrigin()

 .AllowAnyMethod()

 .AllowAnyHeader());

 });

 }

}

public void ConfigureServices(IServiceCollection services)

{

 services.ConfigureCors();

}

https://code-maze.com/net-core-web-development-part2/
https://code-maze.com/net-core-web-development-part2/

 ASP.NET Core Web API Best Practices

5

PROJECT ORGANIZATION

We should always try to split our application into smaller projects. That

way we are getting the best project organization and separation of

concerns (SoC). The business logic related to our entities, contracts,

accessing the database, logging messages, or sending an email message

should always be in a separate .NET Class Library project.

Every small project inside our application should contain many folders to

organize the business logic.

Here is just one simple example of how a complete project should look

like:

https://code-maze.com/wp-content/uploads/2018/05/01-Project-Structure.png

 ASP.NET Core Web API Best Practices

6

ENVIRONMENT BASED SETTINGS

While we develop our application, that application is in the development

environment. But as soon as we publish our application it is going to be in

the production environment. Therefore having a separate configuration

for each environment is always a good practice.

In .NET Core, this is very easy to accomplish.

As soon as we create the project, we are going to get the

appsettings.json file and when we expand it we are going to see the

appsetings.Development.json file:

All the settings inside this file are going to be used for the development

environment.

We should add another file appsettings.Production.json, to use it in a

production environment:

The production file is going to be placed right beneath the development

one.

With this setup in place, we can store different settings in the different

appsettings files, and depending on the environment our application is on,

.NET Core will serve us the right settings. For more information about this

topic, check out Multiple Environments in ASP.NET Core.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments?view=aspnetcore-2.1
https://code-maze.com/wp-content/uploads/2018/05/02-Appsettings-development.png
https://code-maze.com/wp-content/uploads/2018/05/03-Appsettings-production.png

 ASP.NET Core Web API Best Practices

7

DATA ACCESS LAYER

In many examples and different tutorials, we may see the DAL

implemented inside the main project and instantiated in every controller.

This is something we shouldn’t do.

When we work with DAL we should always create it as a separate service.

This is very important in the .NET Core project because when we have

DAL as a separate service we can register it inside the IOC (Inversion of

Control) container. The IOC is the .NET Core’s built-in feature and by

registering a DAL as a service inside the IOC we are able to use it in any

controller by simple constructor injection:

The repository logic should always be based on interfaces and generic as

well. Check out this post: .Net Core series – Part 4 to see how we

implement the Repository Pattern inside the .NET Core’s project.

public class RepoService

{

 private IRepository _repository;

 public RepoService(IRepository repository)

 {

 _repository = repository;

 }

}

https://code-maze.com/net-core-web-development-part4/

 ASP.NET Core Web API Best Practices

8

CONTROLLERS

The controllers should always be as clean as possible. We shouldn't place

any business logic inside it.

So, our controllers should be responsible for accepting the service

instances through the constructor injection and for organizing HTTP action

methods (GET, POST, PUT, DELETE, PATCH…):

public class OwnerController: Controller

{

 private ILoggerManager _logger;

 private IRepoService _repoService;

 public OwnerController(ILoggerManager logger, IRepoService

repoService)

 {

 _logger = logger;

 _repoService = repoService;

 }

 [HttpGet]

 public IActionResult GetAllOwners()

 {

 }

 [HttpGet("{id}", Name = "OwnerById")]

 public IActionResult GetOwnerById(Guid id)

 {

 }

 [HttpGet("{id}/account")]

 public IActionResult GetOwnerWithDetails(Guid id)

 {

 }

 [HttpPost]

 public IActionResult CreateOwner([FromBody]Owner owner)

 {

 }

 [HttpPut("{id}")]

 public IActionResult UpdateOwner(Guid id, [FromBody]Owner owner)

 {

 }

 [HttpDelete("{id}")]

 public IActionResult DeleteOwner(Guid id)

 {

 }

}

 ASP.NET Core Web API Best Practices

9

ACTIONS

Our actions should always be clean and simple. Their responsibilities

include handling HTTP requests, validating models, catching errors, and

returning responses:

Our actions should have IActionResult as a return type in most of the

cases (sometimes we want to return a specific type or a JsonResult...).

That way we can use all the methods inside .NET Core which returns

results and the status codes as well.

The most used methods are:

 OK => returns the 200 status code

 NotFound => returns the 404 status code

 BadRequest => returns the 400 status code

 NoContent => returns the 204 status code
 Created, CreatedAtRoute, CreatedAtAction => returns the 201

status code

[HttpPost]

public IActionResult CreateOwner([FromBody]Owner owner)

{

 try

 {

 if (owner.IsObjectNull())

 {

 return BadRequest("Owner object is null");

 }

 if (!ModelState.IsValid)

 {

 return BadRequest("Invalid model object");

 }

 //additional code

 return CreatedAtRoute("OwnerById", new { id = owner.Id },

owner);

 }

 catch (Exception ex)

 {

 _logger.LogError($"Something went wrong inside the CreateOwner

action: {ex}");

 return StatusCode(500, "Internal server error");

 }

}

 ASP.NET Core Web API Best Practices

10

 Unauthorized => returns the 401 status code

 Forbid => returns the 403 status code

 StatusCode => returns the status code we provide as input

 ASP.NET Core Web API Best Practices

11

HANDLING ERRORS GLOBALLY

In the example above, our action has its own try-catch block. This is

very important because we need to handle all the errors (that in another

way would be unhandled) in our action method. Many developers

are using try-catch blocks in their actions and there is absolutely

nothing wrong with that approach. But, we want our actions to be clean

and simple, therefore, removing try-catch blocks from our actions and

placing them in one centralized place would be an even better approach.

.NET Core gives us an opportunity to implement exception handling

globally with a little effort by using built-in and ready to use middleware.

All we have to do is to add that middleware in the Startup class by

modifying the Configure method:

public void Configure(IApplicationBuilder app, IHostingEnvironment env)

{

 app.UseExceptionHandler(config =>

 {

 config.Run(async context =>

 {

 context.Response.StatusCode =

(int)HttpStatusCode.InternalServerError;

 context.Response.ContentType = "application/json";

 var error =

context.Features.Get<IExceptionHandlerFeature>();

 if (error != null)

 {

 var ex = error.Error;

 await context.Response.WriteAsync(new ErrorModel()

 {

 StatusCode = context.Response.StatusCode,

 ErrorMessage = ex.Message

 }.ToString();

 }

 });

 });

 ...

}

 ASP.NET Core Web API Best Practices

12

We can even write our own custom error handlers by creating custom

middleware:

After that we need to register it and add it to the applications pipeline:

public class CustomExceptionMiddleware

{

 //constructor and service injection

 public async Task Invoke(HttpContext httpContext)

 {

 try

 {

 await _next(httpContext);

 }

 catch (Exception ex)

 {

 _logger.LogError("Unhandled exception ...", ex);

 await HandleExceptionAsync(httpContext, ex);

 }

 }

}

public static IApplicationBuilder UseCustomExceptionMiddleware(this

IApplicationBuilder builder)

{

 return builder.UseMiddleware<CustomExceptionMiddleware>();

}

app.UseCustomExceptionMiddleware();

 ASP.NET Core Web API Best Practices

13

USING ACTIONFILTERS TO REMOVE DUPLICATED

CODE

Filters in ASP.NET Core allows us to run some code before or after the

specific stage in a request pipeline. Therefore, we can use them to

execute validation actions that we need to repeat in our action methods.

When we handle a PUT or POST request in our action methods, we need

to validate our model object as we did in the Actions part of this

article. As a result, that would cause the repetition of our validation code,

and we want to avoid that (Basically we want to avoid any code repetition

as much as we can).

We can do that by using ActionFilters. Instead of validation code in our

action:

We can create our filter:

And register it in the Startup class in the ConfigureServices method:

Now, we can use that filter with our action methods. You can read more

about it in our ActionFilters article.

if (!ModelState.IsValid)

{

 // bad request and logging logic

}

public class ModelValidationAttribute : ActionFilterAttribute

{

 public override void OnActionExecuting(ActionExecutingContext

context)

 {

 if (!context.ModelState.IsValid)

 {

 context.Result = new

 BadRequestObjectResult(context.ModelState);

 }

 }

}

services.AddScoped<ModelValidationAttribute>();

https://code-maze.com/action-filters-aspnetcore/

 ASP.NET Core Web API Best Practices

14

USING DTOS TO RETURN RESULTS AND TO ACCEPT

INPUTS

Even though we can use the same model class to return results or accept

parameters from the client that is not a good practice. A much better

practice is to separate entities that communicate with the database from

the entities that communicate with the client. Yes, the answer is to use

DTOs.

The model class is a full representation of our database table and being

like that, we are using it to fetch the data from the database. But once

the data is fetched we should map the data to the DTO and return that

result to the client. By doing so, if for some reason we have to change the

database, we would have to change only the model class but not the DTO

because the client may still want to have the same result. You can read

more about the DTO’s usage in the fifth part of the .NET Core series.

We shouldn’t be using DTOs only for the GET requests. We should use

them for other actions as well. For example, if we have a POST or PUT

action, we should use the DTOs as well. To read more about this topic,

you can read the sixth part of the .NET Core series.

Additionally, DTOs will prevent circular reference problems as well in our

project.

https://code-maze.com/automapper-net-core/
https://code-maze.com/net-core-web-development-part5/
https://code-maze.com/net-core-web-development-part6/

 ASP.NET Core Web API Best Practices

15

ROUTING

In the .NET Core Web API projects, we should use Attribute Routing

instead of Conventional Routing. That’s because Attribute Routing helps

us match the route parameter names with the actual parameters inside

the action methods. Another reason is the description of the route

parameters. It is more readable when we see the parameter with the

name “ownerId” than just “id”.

We can use the [Route] attribute on top of the controller and on top of

the action itself:

There is another way to create routes for the controller and actions:

There are different opinions on which way is better, but we would always

recommend the second way, and this is something we always use in our

projects.

When we talk about the routing we need to mention the route naming

convention. We can use descriptive names for our actions, but for the

routes/endpoints, we should use NOUNS and not VERBS.

[Route("api/[controller]")]

public class OwnerController: Controller

{

 [Route("{id}")]

 [HttpGet]

 public IActionResult GetOwnerById(Guid id)

 {

 }

}

[Route("api/owner")]

public class OwnerController: Controller

{

 [HttpGet("{id}")]

 public IActionResult GetOwnerById(Guid id)

 {

 }

}

 ASP.NET Core Web API Best Practices

16

A few wrong examples:

A few good examples:

For a more detailed explanation of the Restful practices checkout: Top

REST API Best Practices.

[Route("api/owner")]

public class OwnerController : Controller

{

 [HttpGet("getAllOwners")]

 public IActionResult GetAllOwners()

 {

 }

 [HttpGet("getOwnerById/{id}"]

 public IActionResult GetOwnerById(Guid id)

 {

 }

}

[Route("api/owner")]

public class OwnerController : Controller

{

 [HttpGet]

 public IActionResult GetAllOwners()

 {

 }

 [HttpGet("{id}"]

 public IActionResult GetOwnerById(Guid id)

 {

 }

}

https://code-maze.com/top-rest-api-best-practices/
https://code-maze.com/top-rest-api-best-practices/

 ASP.NET Core Web API Best Practices

17

LOGGING

If we plan to publish our application to production, we should have a

logging mechanism in place. Log messages are very helpful when figuring

out how our software behaves in production.

.NET Core has its own logging implementation by using the ILogger

interface. It is very easy to implement it by using Dependency Injection

feature:

Then in our actions, we can utilize various logging levels by using the

_logger object.

.NET Core supports logging API that works with a variety of logging

providers. Therefore, we may use different logging providers to

implement our logging logic inside our project.

The NLog is a great library to use for implementing our custom logging

logic. It is extensible, supports structured logging, and very easy to

configure. We can log our messages in the console window, files, or even

database.

To learn more about using this library inside the .NET Core check out:

.NET Core series – Logging With NLog.

The Serilog is a great library as well. It fits in with the .NET Core built-in

logging system.

public class TestController: Controller

{

 private readonly ILogger _logger;

 public TestController(ILogger<TestController> logger)

 {

 _logger = logger;

 }

}

https://code-maze.com/net-core-web-development-part3/

 ASP.NET Core Web API Best Practices

18

PAGING, SEARCHING, SORTING

We don’t want to return a collection of all resources when querying our
API. That can cause performance issues and it’s in no way optimized for

public or private APIs. It can cause massive slowdowns and even

application crashes in severe cases.

So, implementing paging, searching, and sorting will allow our users to

easily find and navigate through returned results, but it will also narrow

down the resulting scope, which can speed up the process for sure.

There is a lot of implementation involving these three features, so to learn
more about them, you can read our articles on Paging, Searching, and

Sorting.

VERSIONING APIS

The requirements for our API may change over time, and we want to
change our API to support those requirements. But, while doing so, we

don't want to make out API consumers to change their code, because for

some customers the old version works just fine and for the others, the

new one is the go-to option. To support that, the best practice is to

implement the API versioning. This will preserve the old functionality and

still promote a new one.

We can achieve versioning in a few different ways:

 With attributes: [ApiVersion("2.0")]

 We can provide a version as a query string within the request:
https://some-address/api-version-2.0

 By using the URL versioning: [Route("api/{v:apiversion}/some-

resource")] and the request: https://some-
address/2.0/resource

 With Http header versioning

 Using conventions

We are talking in great detail about this feature and all the other best practices in our Ultimate

ASP.NET Core Web API book.

https://code-maze.com/paging-aspnet-core-webapi/
https://code-maze.com/searching-aspnet-core-webapi/
https://code-maze.com/blazor-webassembly-sorting/
https://code-maze.com/ultimate-aspnet-core-3-web-api/
https://code-maze.com/ultimate-aspnet-core-3-web-api/

 ASP.NET Core Web API Best Practices

19

USING ASYNCHRONOUS CODE

With async programming, we avoid performance bottlenecks and enhance

the responsiveness of our application.

The reason for that is that we are not sending requests to the server and
blocking it while waiting for the responses anymore (as long as it takes).

So, by sending a request to the server, the thread pool delegates a thread

to that request. Once the thread finishes its job it returns to the thread

pool freeing itself for the next request. At some point, the application
fetches the data from the database and it needs to send that data to the

requester. Here is where the thread pool provides another thread to

handle that work. Once the work is done, a thread is going back to the

thread pool.

One important thing to understand is that if we send a request to an

endpoint and it takes the application three or more seconds to process
that request, we probably won’t be able to execute this request any faster

using the async code. It is going to take the same amount of time as the

sync request. But the main advantage is that with the async code the

thread won’t be blocked for three or more seconds, and thus it will be

able to process other requests. This is what makes our solution scalable.

Of course, using the async code for the database fetching operations is

just one example. There are a lot of other use cases of using the async

code and improving the scalability of our application and preventing the

thread pool blockings.

So, for example, instead of having the synchronous action in our

controller:

[HttpGet]

public IActionResult Get()

{

 var owners = _repository.Owner.GetAllOwners();

 _logger.LogInfo($"Returned all owners from database.");

 return Ok(owners);

}

 ASP.NET Core Web API Best Practices

20

We can have an asynchronous one:

Of course, this example is just a part of the story. For the complete

asynchronous example, you can read our Implementing Asynchronous

Code in ASP.NET Core article.

[HttpGet]

public async Task<IActionResult> Get()

{

 var owners = await _repository.Owner.GetAllOwnersAsync();

 _logger.LogInfo($"Returned all owners from database.");

 return Ok(owners);

}

https://code-maze.com/async-generic-repository-pattern/
https://code-maze.com/async-generic-repository-pattern/

 ASP.NET Core Web API Best Practices

21

CACHING

Caching allows us to boost performance in our applications.

There are different caching technologies that we can use:

 Response caching

 In-memory caching

 Distributed caching

 ...

Caching is helpful because reading data from memory is much faster than
reading it from a disk. It can reduce the database cost as well. Basically,

the primary purpose is to reduce the need for accessing the storage

layers, thus improving the data retrieval process.

Different caching technologies use different techniques to cache data.

Response caching reduces the number of requests to a web server. It

reduces the amount of work the web server performs to generate a
response. Also, it uses headers that specify how we want to cache

responses. In-memory caching uses server memory to store cached data.

Distributed caching technology uses a distributed cache to store data in

memory for the applications hosted in a cloud or server farm. The cache

is shared across the servers that process requests.

Basically, it is up to developers to decide what caching technique is the

best for the app they are developing.

You can read more about caching, and also more about all of the topics

from this article in our Ultimate ASP.NET Core Web API book.

https://code-maze.com/ultimate-aspnet-core-3-web-api/

 ASP.NET Core Web API Best Practices

22

USING READFORMASYNC METHOD

There are a lot of cases where we need to read the content from the form

body. One of these cases is when we upload files with our Web API

project. In this situation, we can use the Request.Form expression to get

our file from the body:

Here we use the Requst.Form.Files expression to access the file in the

form body. This is a good solution if we don't create a large application for

millions of users. But if we create a large app for a lot of users, with this

solution we can end up with thread pool starvation. This is mainly

because of the Request.Form is the synchronous technique to read the

data from the form body.

If we want to avoid that (thread pool starvation), we have to use an

async way with the ReadFromAsync method:

For applications with a lot of users, using the Request.Form expression is

safe only if we use the ReadFromAsync method to read the form and then

use the Request.Form to read the cached form value.

public IActionResult Upload()

{

 try

 {

 var file = Request.Form.Files[0];

 var folderName = Path.Combine("Resources", "Images");

 var pathToSave = ...

 ...

 return Ok(new { dbPath });

 }

 ...

}

public asynct Task<IActionResult> Upload()

{

 try

 {

 var formCollection = await Request.ReadFormAsync();

 var file = formCollection.Files.First();

 //everything else is the same

}

 ASP.NET Core Web API Best Practices

23

To see a full example for both approaches, you can read our Upload Files

with .NET Core Web API article.

https://code-maze.com/upload-files-dot-net-core-angular/
https://code-maze.com/upload-files-dot-net-core-angular/

 ASP.NET Core Web API Best Practices

24

CRYPTOHELPER AND DATA PROTECTION

We won't talk about how we shouldn’t store the passwords in a database

as plain text and how we need to hash them due to security reasons.

That's out of the scope of this guide. There are various hashing

algorithms all over the internet, and there are many different and great

ways to hash a password.

If we want to do it on our own, we can always use the IDataProtector

interface which is quite easy to use and implement in the existing project.

To register it, all we have to do is to use the AddDataProtection method in

the ConfigureServices method. Then it can be injected via Dependency

Injection:

Finally, we can use it: _protector.Protect("string to protect");

You can read more about it in the Protecting Data with IDataProtector

article.

But if need a library that provides support to the .NET Core's application

and that is easy to use, the CryptoHelper is quite a good library.

The CryptoHelper is a standalone password hasher for .NET Core that

uses a PBKDF2 implementation. The passwords are hashed using the

new Data Protection stack.

private readonly IDataProtector _protector;

public EmployeesController(IDataProtectionProvider provider)

{

 _protector = provider.

CreateProtector("EmployeesApp.EmployeesController");

}

https://code-maze.com/data-protection-aspnet-core/
https://code-maze.com/data-protection-aspnet-core/
https://github.com/aspnet/DataProtection

 ASP.NET Core Web API Best Practices

25

This library is available for installation through the NuGet and its usage is

quite simple:

using CryptoHelper;

// Method for hashing the password

public string HashPassword(string password)

{

 return Crypto.HashPassword(password);

}

// Method to verify the password hash against the given password

public bool VerifyPassword(string hash, string password)

{

 return Crypto.VerifyHashedPassword(hash, password);

}

 ASP.NET Core Web API Best Practices

26

CONTENT NEGOTIATION

By default, .NET Core Web API returns a JSON formatted result. In most

cases, that’s all we need.

But what if the consumer of our Web API wants another response format,

like XML for example?

For that, we need to create a server configuration to format our response

in the desired way:

Sometimes the client may request a format that is not supported by our

Web API and then the best practice is to respond with the status code 406

Not Acceptable. That can be configured inside our ConfigureServices

method as well:

We can also create our own custom format rules.

Content negotiation is a pretty big topic so if you want to learn more

about it, check out: Content Negotiation in .NET Core.

public void ConfigureServices(IServiceCollection services)

{

 services.AddMvc(config =>

 {

 // Add XML Content Negotiation

 config.RespectBrowserAcceptHeader = true;

 config.InputFormatters.Add(new XmlSerializerInputFormatter());

 config.OutputFormatters.Add(new XmlSerializerOutputFormatter());

 });

}

config.ReturnHttpNotAcceptable = true;

https://code-maze.com/content-negotiation-dotnet-core/

 ASP.NET Core Web API Best Practices

27

SECURITY AND USING JWT

JSON Web Tokens (JWT) are becoming more popular by the day in web

development. It is very easy to implement JWT Authentication is very

easy to implement due to the .NET Core’s built-in support. JWT is an open

standard and it allows us to transmit the data between a client and a

server as a JSON object in a secure way.

We can configure the JWT Authentication in the ConfigureServices

method:

In order to use it inside the application, we need to invoke this code in

the Configure method:

We may use JWT for the Authorization part as well, by simply adding the

role claims to the JWT configuration.

To learn in more detail about JWT authentication and authorization in

.NET Core, check out JWT with .NET Core and Angular Part 1 and Part 2 of

the series.

ASP.NET Core Identity

Additionally, if you want to use some advanced security actions in your

application like Password Reset, Email Verification, Third Party

Authorization, etc., you can always refer to the ASP.NET Core Identity.

public void ConfigureServices(IServiceCollection services)

{

 services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)

 .AddJwtBearer(options =>

 {

 options.TokenValidationParameters = new

TokenValidationParameters

 {

 //Configuration in here

 };

 });

}

app.UseAuthentication();

https://code-maze.com/authentication-aspnetcore-jwt-1/
https://code-maze.com/authentication-aspnetcore-jwt-2/
https://code-maze.com/authentication-aspnetcore-jwt-2/
https://code-maze.com/asp-net-core-identity-series/

 ASP.NET Core Web API Best Practices

28

ASP.NET Core Identity is the membership system for web applications

that includes membership, login, and user data. It contains a lot of

functionalities to help us in the user management process. In our

ASP.NET Core Identity series, you can learn a lot about those features

and how to implement them in your ASP.NET Core project.

Using IdentityServer4 – OAuth2 and OpenID Connect

IdentityServer4 is an Authorization Server that can be used by multiple

clients for Authentication actions. It has nothing to do with the user store

management but it can be easily integrated with the ASP.NET Core

Identity library to provide great security features to all the client

applications. OAuth2 and OpenID Connect are protocols that allow us to

build more secure applications. OAuth2 is more related to the

authorization part where OpenID Connect (OIDC) is related to the

Identity(Authentication) part. We can use different flows and endpoints

to apply security and retrieve tokens from the Authorization Server. You

can always read RFC 6749 online documentation to learn more about

OAuth2.

https://code-maze.com/asp-net-core-identity-series/
https://code-maze.com/asp-net-core-identity-series/
https://tools.ietf.org/html/rfc6749

 ASP.NET Core Web API Best Practices

29

TESTING OUR APPLICATIONS

We should write tests for our applications as much as we can. We know,

from our experience, there is no always time to do that, but it is very

important for checking the quality of the software we are writing. We can

discover potential bugs in the development phase and make sure that our

app is working as expected before publishing it to production. Of course,

there are many additional reasons to write tests for our applications.

To learn more about testing in ASP.NET Core application (Web API, MVC,

or any other), you can read our ASP.NET Core Testing Series, where we

explain the process in great detail.

CONCLUSION

In this guide, our main goal was to familiarize you with the best practices

when developing a Web API project in .NET Core. Some of those could be

used in other frameworks as well, therefore, having them in mind is

always helpful.

Thank you for reading the guide and I hope you found something useful in

it.

If you want to learn how to apply these practices on a real world project,

check out our Ultimate ASP.NET Core 3 Web API program. It’s jam-

packed with concrete examples and implementations of the concepts

described in this free eBook and more!

Happy coding!

https://code-maze.com/asp-net-core-mvc-testing/
https://code-maze.com/ultimate-aspnet-core-3-web-api/?source=eb

	Introduction
	Startup Class and the Service Configuration
	Project Organization
	Environment Based Settings
	Data Access Layer
	Controllers
	Actions
	Handling Errors Globally
	Using ActionFilters to Remove Duplicated Code
	Using DTOs to Return Results and to Accept Inputs
	Routing
	Logging
	Paging, Searching, Sorting
	Versioning APIs
	Using Asynchronous Code
	Caching
	Using ReadFormAsync Method
	CryptoHelper And Data Protection
	Content Negotiation
	Security and Using JWT
	Testing Our Applications
	Conclusion

